Using QR Decomposition to Obtain a New Instance of Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions
نویسندگان
چکیده
The purpose of this paper is to introduce a new instance of the Mesh Adaptive Direct Search (Mads) class of algorithms, which utilizes a more uniform distribution of poll directions than do other common instances, such as OrthoMads and LtMads. Our new implementation, called QrMads, bases its poll directions on an equal area partitioning of the n-dimensional unit sphere and the QR decomposition to obtain an orthogonal set of directions. While each instance produces directions which are dense in the limit, QrMads directions are more uniformly distributed in the unit sphere. This uniformity is the key to enhanced performance in higher dimensions and for constrained problems. The trade-off is that QrMads is no longer deterministic and at each iteration the set of polling directions is no longer orthogonal. Instead, at each iteration, the poll directions are only ‘nearly orthogonal,’ becoming increasingly closer to orthogonal as the mesh size decreases. Finally, we present a variety of test results on smooth, nonsmooth, unconstrained, and constrained problems and compare them to OrthoMads on the same set of problems.
منابع مشابه
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS extends the Generalized Pattern Search (GPS) class by allowing local exploration, called polling, in a dense set of directions in the space of optimization variables. This means that under certain hypotheses, including a weak constraint qualification due to Rockafellar, MADS can tre...
متن کاملOrthoMADS: A Deterministic MADS Instance with Orthogonal Directions
The purpose of this paper is to introduce a new way of choosing directions for the Mesh Adaptive Direct Search (MADS) class of algorithms. The advantages of this new ORTHOMADS instantiation of MADS are that the polling directions are chosen deterministically, ensuring that the results of a given run are repeatable, and that they are orthogonal to each other, therefore the convex cones of missed...
متن کاملDirect Search Based on Probabilistic Descent
Direct-search methods are a class of popular derivative-free algorithms characterized by evaluating the objective function using a step size and a number of (polling) directions. When applied to the minimization of smooth functions, the polling directions are typically taken from positive spanning sets which in turn must have at least n+1 vectors in an n-dimensional variable space. In addition,...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملUsing Simplex Gradients of Nonsmooth Functions in Direct Search Methods
It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions in the context of dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Optimization Theory and Applications
دوره 159 شماره
صفحات -
تاریخ انتشار 2013